Mathematics
Б.И.Пташник.. Некорректные граничные задачи для дифференциальных уравнений с частными производными. 1984
Description: Монография посвящена исследованию корректности неклассических задач для линейных дифференциальных уравнений и систем с частными производными гиперболического и составного типов: аналога многоточечной задачи, задачи типа Дирихле, периодической краевой задачи и ее обобщения. Разрешимость этих задач связана с проблемами малых знаменателей и является неустойчивой по отношению к малым изменениям области, а также коэффициентов уравнений и граничних условий.1984г. Два листа повреждены (фото).
Ю.Л.Геворкян,А.Л.Григорьев,Н.А.Чикина.. Краткий курс высшей математики.Часть 2-я.. 2010
Description: Учебное пособие в двух частях.Харьков НТУ "ХПІ" 2010 г. 475 стр.
Берже М. . Геометрия.Том первый. . 1984
Description: В 2-х томах, 5-ти частях М., Мир, 1984г., 560,368 с., твердый переплет, увеличенный формат. Том 1. - Действие групп, аффинные и проективные пространства. - Евклидовы пространства, треугольники, окружности и сферы. - Выпуклые тела и полиэдры, правильные многогранники, площади и объемы.
Минорский В. П.. Сборник задач по высшей математике. . 1987
Description: Учебное пособие для студентов высших технических учебных заведений. Издание тринадцатое. М. Наука. 1987 г. 352с. твердый переплет, обычный формат.
Овчинников П.Ф., Яремчук Ф.П., Михайленко В.М.. Высшая математика. 1989
Description: Дифференциальные уравнения. Операционное исчисление. Ряды и их приложения. Устойчивость по Ляпунову. Уравнения математической физики. Оптимизация и управление. Теория вероятностей. Численные методы. К. Вища школа 1989г. 680 с.
Бараненков Г.С.,Демидович Б.П.,Ефименко В.А. . Задачи и упражнения по математическому анализу. . 1978
Description: Для втузов. Под редакцией Б.П.Демидовича М. Наука 1978г. 480 с. ил. Твердый переплет, Обычный формат.
Прудников А. П., Брычков Ю. А., Маричев О. И.. Интегралы и ряды. Дополнительные главы. 1986
Description: Описание: Книга содержит неопределенные и определенные интегралы, суммы и ряды, не вошедшие в предыдущие два тома. Приведены таблицы представлений обобщенных гипергеометрических функций, G-функции Мейера и их преобразований Меллина. Помещены разделы, посвященные свойствам гипергеометрических функций, G-функции Мейера и H-функции Фокса. Первое издание 1986 г. Книга предназначена для широкого круга специалистов в различных областях, а также для студентов высших учебных заведений.1986г.
Кудрявцев В.А., Демидович Б.П. . Краткий курс высшей математики. . 1989
Description: Учебное пособие для вузов. 7-е изд., испр. М. Наука 1989г. 656 с. Палiтурка / переплет: твердый, обычный формат. Содержит четкое и ясное изложение курса высшей математики в объеме 250-300 часов. Наличие большого количества примеров помогает усвоению теоретического материала. Для студентов естественных (геологического, географического, биологического и почвенного) факультетов университетов
Хейл, Д.К.. Теория функционально-дифференциальных уравнений. 1984
Description: Хейл, Д.К. Теория функционально-дифференциальных уравнений / Дж. Хейл ; перевод с англ. С. Н. Шиманова. - М. : Мир, 1984. - 421 с.; 22 см. Перевод изд.: Theory of functional differential equations / Jack Hale (New York etc., 1977)
Маркушевич А.И. . Краткий курс теории аналитических функций. . 1978
Description: 4-е изд., испр. и доп. М. Наука 1978г. 416 с. Палiтурка / переплет: твердый, увеличенный формат. Университетский курс в объеме, прудсмотренном программой математических факультетов. Последнее издание выходило в 1966 г. В новом издании автором внесены некоторые изменения в связи с требованиями программы, а также запросами читателей, самостоятельно изучающих предмет. В частности, включены дополнительно сведения об эллиптических функциях Вейерштрасса, о целых функциях экспоненциального типа с применениями к теории аналитического продолжения. теорема о монодромии, теорема Рунге о разложении аналитической функции в ряд многочленов и понятие о модулярной функции Шварца с приложением к доказательству малой теоремы Пикара. В целом книга остается учебным пособием, ставящим целью доступное и пясняемой многими примерами изложение основного содержания университетского курса. Список литературы для дальнейшего изучения обновлен.