Mathematics
Райхмист Р. Б. . Графики функций. . 1991
Description: Справочное пособие для вузов. Москва Высшая школа 1991г. 160 с. Палiтурка / переплет: Мягкий, Обычный формат. В пособии рассматриваются различные классы функций и методы построения их графиков. Особое внимание уделено графикам функций, заданных неэлементарно (например с помощью пределов), заданных параметрически и т. п. В основном приводятся графики функций, широко используемых в различных областях инженерных знаний.
Панчишкин А.А., Шавгулидзе Е.Т. . Тригонометрические функции в задачах.. 1986
Description: М. Наука 1986г. 160 с., илл. Палiтурка / переплет: мягкий, обычный формат. В конце каждой главы даются задачи для самостоятельного решения. Приводится необходимый теоретический материал, разбираются узловые вопросы школьной программы по математике, относящиеся к тригонометрии.
Прудников А.П., Брычков Ю.А., Маричев О.И.. Интегралы и ряды. Элементарные функции.. 1981
Description: М. Наука 1981г. 800 с. Палiтурка / переплет: твердый, увеличенный формат. Книга содержит неопределенные и определенные (в том числе кратные) интегралы, конечные суммы, ряды и произведения с элементарными функциями. Она является наиболее полным справочным руководством, включает результаты, изложенные в аналогичных изданиях, а также в научной литературе. Книга предназначена для широкого круга специалистов в различных областях знаний, атакже для студентов вузов
Сэмпсон Д. . Уравнения переноса энергии и количества движения в газах с учетом излучения. 1969
Description: Серия "Библиотека сборника "Механика". М., Мир, 1969 г. 208 с.
Тиман А., Трофимов В.. Введение в теорию гармонических функций. . 1968
Description: М. Наука 1968г. 208 с., ил. Палiтурка / переплет: Мягкий, обычный формат. Основой аппарата классической теории гармонических функций является общая интегральная формула Остроградского. Этой формуле и некоторым наиболее существенным ее трактовкам посвящена специальная глава. Отдельно рассматривается также фундаментальное понятие теории - оператор Лапласа и некоторые другие примыкающие к нему понятия анализа. По аналогии с основными свойствами линейной функции вводится определение гармонической функции нескольких переменных и с помощью формулы Грина для оператора Лапласа устанавливаются соответствующие свойства этих функций. Дальнейшее развитие теории строится на формуле Пуассона, которая служит простейшим, а также наиболее важным примером решения задачи Дирихле. Другим важным средством изучения гармонических функций рассматриваемым в книге, является интеграл энергии. Излагаются некоторые относящиеся к нему неравенства, даны представления о вариационном принципе Дирихле и полное доказательство этого принципа для шаровой области.
Суворов И.Ф.. Курс высшей математики для техникумов.. 1967
Description: Седьмое изд. М Высшая школа 1967г. 408 с. Палiтурка / переплет: Твердый, Обычный формат В данном, седьмом, издании Курс высшей математики для техникумов приведен в соответствие с программой по математике для техникумов, утвержденной 21 апреля 1966 г. В соответствии с программой в Курс внесены вновь параграфы: понятие об уравнении линии, обзор свойств и графиков основных элементарных функций, наибольшее и наименьшее значения функции на отрезке, интегрирование по частям, среднее значение функции на отрезке, плошать сегмента параболы, площадь эллипса. Внесена новая глава: дифференциальные уравнения. Весь новый материал иллюстрируется примерами и решениями задач и снабжен задачами и упражнениями для решения их студентами. Старый текст в немногих отдельных местах поправлен или частично переработан с заменой формулировок и доказательств новыми, более краткими и доступными, в некоторых случаях приведены дополнительно примеры.
Бейтмен Г., Эрдейи А. . Высшие трансцендентные функции. Том 1.. 1965
Description: Гипергеометрическая функция. Функции Лежандра. Справочная математическая библиотека М. Наука 1965г. 296 с., илл. Твердый переплет,, слегка увеличенный формат. Настоящая книга представляет собой перевод первого тома вышедшего в США трехтомного издания под названием Высшие трансцендентные функции, являющегося наиболее полным из существующих ныне трудов по теории специальных функций. Она содержит не только все формулы по теории специальных функций, полученные к концу 40-х годов, но и сжато изложенную теорию этих функций.
Бейтмен Г., Эрдейи А.. Высшие трансцендентные функции. Том 2.. 1974
Description: Преобразования Бесселя. Интегралы от специальных функций. Серия: Справочная математическая библиотека. М. Наука 1974г. 296 с. Палiтурка / переплет: твердый, увеличенный формат. Во втором томе содержатся таблицы преобразований Бесселя, римана-Лиувилля, Вейля, Стилтьеса, Гильберта, а также таблицы интгреалов от специальных функций. По полноте охвата это издание уникально.
Макки Дж.. Лекции по математическим основам квантовой механики. 1965
Description: Серия "Библиотека сборника "Математика". М., Мир, 1965 г. 222 с. Cостояние отличное.
Леман Иоханнес.. Увлекательная математика. . 1985
Description: Перевод с немецкого Ю. Данилова. Серия: Переводная научно-популярная литература. М.: Знание 1985г. 271 с. Палiтурка / переплет: Мягкий, уменьшенный формат. Автор книги, главный редактор научно-популярного немецкого журнала Альфа, собрал в ней несколько сотен задач, среди которых и совсем свежие, и такие, чей возраст исчисляется тысячелетиями. Большое количество иллюстраций делает книгу особенно привлекательной для школьников, которым она в первую очередь и адресована.
Description of seller: на двух листах недостатки (фото)